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An Equivalent Circuit Model for Terminated
Hybrid-Mode Multiconductor
Transmission Lines

LAWRENCE CARIN aND KEVIN J. WEBB, MEMBER, TEEE

Abstract — An equivalent circuit for terminated hybrid-mode multicon-
ductor transmission lines is presented. Existing CAD packages, such as
SPICE, can be used for its implementation. Model parameters can be
found from either a TEM or a full-wave analysis of the transmission lines.
The equivalent circuit is used to simulate multiconductor microstrip for
applications in high-speed integrated circuits. An examination of the
validity of the TEM approximation for example cases is carried out in the
time and frequency domains.

I. INTRODUCTION

ICROSTRIP transmission lines have been the sub-
M ject of extensive study for many years. However,
the various terms used to describe the microstrip modes
are often not clearly delineated. For clarity, it is necessary
that the different identifications for the microstrip modes
be explicitly defined. In this paper a TEM mode is defined
as one with zero or negligible longitudinal fields and no
dispersion; a quasi-TEM mode has negligible longitudinal
fields but is not dispersionless; and a hybrid mode has
both dispersion and all six field components. The TEM
and quasi-TEM modes are special cases of the hybrid
mode, and the classification of a given mode as TEM or
quasi-TEM often will depend on the frequency range of
interest. Microstrip embedded in an inhomogeneous
medium supports only hybrid modes. However, at suffi-
ciently low frequencies the propagating hybrid modes have
small longitudinal field components relative to the trans-
verse fields. For this reason microstrip lines are often
analyzed under the assumption that the longitudinal fields
can be neglected. This has contributed to the structure’s
popularity, as by neglecting the longitudinal fields one can
define line voltage and current compatible with ordinary
lumped circuit devices. Since the longitudinal fields are
neglected, the transmission line parameters are usually
found in terms of per-unit-length inductance and capaci-
tance matrices calculated through a dc electric and mag-
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netic analysis [1]. Such an analysis will be referred to in
this paper as a TEM calculation of the microstrip parame-
ters (mode velocities, eigencurrents, and eigenvoltages).
This is a frequency-independent analysis and therefore one
obtains TEM modes. The longitudinal variation of voltage
and current on the TEM microstrip is described by tele-
graphist’s equations [2]. Frequency-dependent voltage and
current using a quasi-TEM approach can be simulated
approximately by assuming frequency-dependent induc-
tance and capacitance matrices [3]. However, as digital
integrated circuits get faster, the pulse rise and fall times
will become shorter and thus their frequency spectrum will
extend into the millimeter-wave regime. The assumption
that the longitudinal fields are negligible is less accurate as
frequency increases. For these high-frequency cases a full-
wave analysis is required to validate that the longitudinal
fields can be neglected, and when deemed appropriate it
can be used to define quasi-TEM parameters that accu-
rately depict the frequency dependence of the lines.

A full-wave method, such as the spectral-domain tech-
nique [4], accurately models frequency-dependent mi-
crostrip. Using the spectral-domain technique one assumes
the lines are infinitesimally thin and that the conductors
are lossless. After solving for the true hybrid modes, one
can determine if the longitudinal fields are negligible rela-
tive to the transverse fields, and if appropriate a quasi-TEM
analysis can be employed to describe the longitudinal
variation (propagation) of the modes. The approximate
quasi-TEM analysis is desired as opposed to continuing
with the rigorous full-wave approach (after finding the
hybrid modes) because the line terminations are usually
described by circuit quantities (voltage and current) rather
than by the more general field quantities [S]. Thus the
full-wave technique is used to find the frequency-depen-
dent microstrip parameters (line currents, modal power,
and complex modal propagation constants), and when
appropriate these are then used to define equivalent quasi-
TEM voltages and currents. Since the voltage cannot be
defined uniquely in terms of an integral of electric field, it
is defined indirectly through a characteristic impedance
which relates voltage to current. This characteristic
impedance itself cannot be uniquely defined since the
modes are hybrid, but well-accepted definitions are avail-
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able in the literature [6]-[8]. In this way one obtains
frequency-dependent microstrip parameters (found from a
rigorous full-wave solution) which are compatible with
standard lumped circuit models. The benefit inherent in
using a full-wave technique is that one evaluates the true
hybrid microstrip fields and then determines the accuracy
of using a TEM or a quasi-TEM analysis. As the frequency
of operation gets higher, the modes start to deviate too far
from quasi-TEM modes (negligible longitudinal fields) and
one must analyze the problem from the field rather than
the circuit point of view [9].

Since multiconductor microstrip is a common compo-
nent in integrated circuits, there has been much work done
to simulate signal propagation on such lines. Almost all
have relied on the telegraphist’s equations which use in-
ductance and capacitance matrices. Using these equations,
Chang [2] has shown that one can decouple a system of N
coupled microstrip lines into a set of N decoupled TEM
modes. The system of coupled lines can then be analyzed
by using congruence transformers to couple these modes at
terminations. Tripathi [10] has used this approach to incor-
porate the analysis of lossless, dispersionless multiconduc-
tor transmission lines with SPICE by using dependent
voltage and current sources at terminations instead of
transformers. These approaches, as well as many others
[11], [12], rely on the telegraphist’s equations and the
corresponding inductance and capacitance matrices.

Djordjevic et al. [3] used a time-dependent Green’s
function and augmented lines terminations to model fre-
quency-dependent, lossy multiconductor transmission lines.
Although in [3] the Green’s function was determined
through inductance and capacitance matrices, it could also
be determined from frequency-dependent parameters
found through a full-wave analysis. This approach, al-
though rigorous and general, can be complicated to use
due to the need to find appropriate matching networks for
the terminations. Additionally, the model is not readily
compatible with existing CAD package such as SPICE
since it requires the computation and storage of a time-
dependent Green’s function. Tripathi [13] has presented a
model compatible with SPICE to simulate time-harmonic
signal propagation on lossy, dispersive multiconductor
transmission lines. This model, however, requires the de-
coupled modes to be characterized by a cascade of lumped
elements between ideal (lossless and dispersionless) trans-
mission lines. In [13] each decoupled line is represented by
16 cascaded lumped element sections. This results in an
equivalent circuit that must be modified with changing line
lengths and operating frequencies. In this paper a new
model for multiconductor microstrip is presented. The
model is similar to that in [10] but is compatible with a
full-wave or TEM solution for the multiconductor mi-
crostrip parameters. Unlike the model in [13], the form of
the equivalent circuit is independent of line length and
frequency of operation. It is implemented here by using
SPICE and therefore can analyze lossless, dispersive lin-
early loaded lines and lossless, nondispersive nonlinearly
loaded lines. The capabilities of the model are limited in
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Fig. 1. Three shielded microstrip lines on a single substrate. Geometry
studied has parameters w=1.524 mm, s =0.254 mm, ¢=0.254 mm,
h=254 cm, and a=2.54 cm, ¢,, =1, ¢,, = 4.65.

this implementation by the fact that SPICE currently
analyzes only dispersionless and lossless single transmis-
sion lines. If another CAD package more powerful than
SPICE were used (capable of analyzing lossy single trans-
mission lines), loss could also be included in the equivalent
circuit model.

The paper begins by deriving an equivalent circuit model
for multiconductor microstrip. It is shown that the model
can be easily incorporated into existing software packages
such as SPICE. An explanation is given as to how the
model is compatible with either a TEM or a full-wave-based
solution ‘of the microstrip parameters. An example case
previously examined in the literature is analyzed to vali-
date the model’s accuracy. Several examples are considered
for a dispersive, asymmetric, dual-level coupled microstrip
geometry. Results are given for time-harmonic as well as
pulse signal propagation on the coupled microstrip.

II. Circuir MODEL

Consider a multiconductor shielded microstrip geometry
such as that in Fig. 1. For a geometry with N strips (plus
ground) there are N fundamental zero-cutoff-frequency
modes. These are commonly referred to as TEM or quasi-
TEM modes because at low enough frequencies the longi-
tudinal compouents of electric and magnetic field are
negligible compared to the corresponding transverse fields.
For simplicity, throughout the derivation of the model the
fields are assumed to be time-harmonic and the time
dependence e/“' is suppressed. However, after the model is
derived it will be shown that the equivalent circuit is
capable of describing the propagation of more general
signals. Let the current on line k& for mode j be denoted
iy, where j=1,2,..., Nand k=1,2,..., N. Using bra-ket
notation, an eigencurrent |i;) is defined for mode j as

N

Z ikj|k>

k=1

|i j> = (1)
where |k) corresponds to line k. A corresponding eigen-
voltage |v ) can be defined as

N

o)) = 2 vlk) o3
k=1

where v, is the voltage of line k for mode j with respect

to a reference conductor. The eigencurrents and eigenvolt-

ages can be related via modal characteristic impedances

Z,,, where v, =Z, i, . The eigencurrents, eigenvoltages,
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modal characteristic impedances, and propagation con-
stants can be determined under the TEM assumption using
inductance and capacitance matrices [1], [2] or from a
general full-wave technique [4], [5], as will be shown in the
next section.

The eigenkets |i,) and |v,) are unique to within a
common multiplicative constant determined by the bound-
ary and initial conditions. The total voltage and current on
the lines are superpositions of the different eigenkets:

N N N

|1T> = E a/lij> = Z aj E Zk_]!k> (3)
J=1 J=1 k=1
N N N

IUT> = Z a1|0j>= a/ E lijkj’k> (4)
J=1 Jj=1 k=1

where a, is the mode coefficient for mode J, as determined
by the boundary and initial conditions. The kets |i;-) and
lvy) represent the total currents and voltages, respectively,
on the lines at point z. Since there is one mode coefficient
for each mode in (3) and (4), these equations pertain to
signals traveling in one direction with no reflection. When
reflection is subsequently considered for terminated mi-
crostrip, each mode j will have forward (a{*’) and back-
ward (a(7) mode coefficients with corresponding propa-
gation constants (e */A%) to represent the forward and
backward propagation of a given mode. The total current
and voltage on line k at point z are, respectively,

N
<k|lT> = Z ajikj (Sa)
J=1

and

N

(klog) = E ajiijkj' (Sb)
7=1

The total voltages and currents can be written in matrix

form as

Ia=i,

(6)
where I and V are N X N matrices with components i,
and iy, Z, (row k, column j), respectively. The N-dimen-
sional column vectors iy and v, are the total voltages and
currents on the N lines as defined in (5a) and (5b),
respectively, and a is a column vector representing the
mode coefficients. The total voltage and current, v, and
iy, depend solely on a;,a,,* -, ay, which change with
spatial position according to the phase factor of the given
mode, i.e.,

Va=v;

a(z+1)=a,(z)e

(7)
for mode j propagating a distance / in the positive z
direction.

Considering terminated microstrip, it is possible to model
the system of transmission lines with equivalent decoupled
lines of unit characteristic impedance. This is seen by
defining the equivalent voltage for mode j as

= o (+),—iB,2 (—)p B,z
v,=a," e +aj e’/rs

(8)
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and the current as

i, =a{Pe b — el (9)
with B, being the propagation constant for mode ;. These
equations describe the spatial variation of the mode coeffi-
cients for mode j. Each mode ; is modeled with equiva-
lent decoupled transmission lines of unit characteristic
impedance and propagation constant (time delay) coming
from the full-wave or TEM analysis of mode ;.

The total true voltages and currents of the terminated
lines are related to these equivalent voltages and currents
through (6). It is therefore seen that

(10)

where i and v are N-dimensional column vectors that
represent the modal coefficients with components given by
(8) and (9) and correspond to the transmission line modal
quantities, Now, i, and v, represent the total current and
voltage, respectively, at point z for terminated microstrip
with forward and backward traveling modes. The equiva-
lent decoupled transmission lines described by ¢ and v are
related to the voltages and currents at all points on the
physical lines by I and V. Since (10) is valid at all points z,
the circuit model for the multiple lines will be formulated
by imposing these coupling conditions at the terminations,
z=0 and z =/, where / is the line length. Thus I and ¥V
are used at the terminations as couplers of the N decou-
pled equivalent transmission lines of unit characteristic
impedance to represent the N physical coupled lines. To
construct the equivalent circuit model, consider

Vo=v;

. —1.
i=1I"iy

v, =Vo. (11)
If the matrix components of I~ and V¥ are labeled by b,
and v,, (row i, column k), respectively, the desired equiva-
lent circuit can be represented as shown in Fig. 2.

The generality of the model is dictated by the capabili-
ties of the CAD package with which it is implemented.
Currently, SPICE can handle lossless, dispersionless single
transmission lines. Using SPICE the model can handle
arbitrarily loaded (linear or nonlinear) lossless, dispersion-
less multiconductor microstrip. If one considers only linear
loads, the model can be extended to handle dispersion.
This is done by using SPICE to sweep the frequency range
of interest as the frequency-dependent model parameters
are varied accordingly. An inverse FFT is then used to
take the frequency-domain data from SPICE into the time
domain to study dispersive signal propagation on linearly
loaded multiconductor microstrip. Touchstone [14] uses a
frequency-dependent attenuation constant to analyze lossy
single lines. Thus if the model were implemented using
Touchstone rather than SPICE, loss could also be included
by using an attenuation constant in each decoupled trans-
mission line corresponding to the attenuation of the mode
each line simulates.
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Fig. 2. Circuit model for N coupled microstrip lines. The N equivalent
decoupled lines in the box represent the propagation of the N modes
and they are coupled at the terminations by the dependent sources. The
physical ports of the true lines are labeled 1 to N and N+1 to 2N on
the two ends of the lines. All summations are for k=1 to N.

The main advantage of this model over those presented
previously [2], [10]-[12] is that it is not restricted to the
analysis of multiconductor microstrip using parameters
from a TEM analysis of the transmission lines. The form
of the model remains the same regardless of whether the
model parameters are determined from a full-wave or a
TEM solution. Thus results from the full-wave approach
can easily be used to check those using the TEM approxi-
mation. Unlike the frequency-dependent model in [13], no
complicated equivalent circuits of cascaded lumped ele-
ments are required to simulate the decoupled lines. Addi-
tionally, the model in [13] requires an extra step, not
required in the present model, to synthesize the equivalent
lumped elements after the frequency-dependent eigencur-
rents, eigenvoltages, and propagation constants have been
determined.

111

The circuit model presented in the previous section is
compatible with a TEM or a full-wave solution for the
multiconductor parameters. Since the TEM [1}, [2] and
full-wave analysis [4], [5] of microstrip have been studied
extensively in the literature, only the essential details of
each will be presented here. The presentation will be
restricted to the lossless case, although, as mentioned above,
loss could also be included.

MODEL PARAMETERS

A. TEM

Under the TEM assumption, the voltage and current on
the N lines are described by the transmission line equa-
tions

d J 1

ZUZ_LEt ( a)
a a

—i=—C— 12b
3zl Cat” (12b)

where i and v are N-dimensional eigenvectors‘ represent-
ing the currents and voltages, respectively, on the N lines,
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and L and C are per-unit-length N X N inductance and
capacitance matrices, respectively. The capacitance matrix
is found using static electric field analysis, and the induc-
tance matrix is determined from the capacitance matrix for
the geometry with all dielectrics replaced with free space
[1]. Assuming an e/(“/~B2) ¢ and z variation for i and v,
(12a) and (12b) can be rearranged to yield

(LC—NU)v=0 (13a)
(CL—-\U)i=0 (13b)

where A = (8/w)? and U is the unit matrix. The eigencur-
rents and eigenvoltages share the same eigenvalues [15].
Thus, one can solve (13a) and (13b) for the N eigenvolt-
ages and eigencurrents with corresponding propagation
constant B = wyA. The eigenvoliages, eigencurrents, and
propagation constants are used to construct the equivalent
circuit.

B. Full-Wave

The spectral-domain technique with a method of mo-
ments solution is used for the full-wave analysis of multi-
conductor microstrip [4]. By working in the spectral do-
main, one obtains an equation of the form

Zce=0

(14)

where for a geometry of N lines Z is an N(m, + m,)X
N(m, + m,) matrix, where m, and m, are the number of
basis functions used to represent the x- and z-directed
surface current densities, respectively, and ¢ is an N(m, +
m,)-dimensional vector representing the basis function
coefficients for the surface current density. By setting the
determinant of Z equal to zero one can determine the
propagation constants for the N fundamental modes of the
microstrip (as well as all evanescent modes). These eigen-
values are then substituted back into Z to solve for the
relative basis function coefficients, ¢. Once the current
density is known, one can solve for the six field compo-
nents associated with each mode. The current on line k for
mode j is defined as

m,
ik,=fs Z Cl(k])flij)(x)dx

L l=1

(15)

where f,{/’(x) is basis function number / of the longitudi-
nal surface current for mode j, line k, and cff’ is its
corresponding basis function coefficient. The integral is
defined over the cross section of the strip, Sy. The defini-
tion of modal characteristic impedance used in this work is

[6]

/Et(j) X H*-dS

Zy;= :
g i lix y
where E() is the total electric field for mode j and H{”
is the partial magnetic field associated with the current on
line k for mode j. The integral exists over the cross section
of the shielded microstrip, which can be made large to

approximate an open structure for the guided modes. It
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should be noted that the definition of Z,, is not unique
due to the hybrid nature of the microstrip modes. Other
impedance definitions are available [7], [8], any of which
can be used in the circuit model. The eigenvoltages can be
defined by using the modal characteristic impedances and
eigencurrents, and along with the eigencurrents and propa-
gation constants define the equivalent circuit.

1V. ExaMPLES

All eigencurrents, modal characteristic impedances, and
effective dielectric constants used in this section were
calculated using the full-wave technique outlined. At low
frequencies, where these parameters are constant, the solu-
tion corresponds to the frequency-independent TEM solu-
tion. Thus if one can calculate the hybrid-mode parameters
of microstrip using a full-wave solution, then the TEM
parameters can easily be calculated by operating at low
frequencies. Additionally, all examples were implemented
using SPICE.

To verify the validity of the model, an example from the
literature is analyzed. The example corresponds to a case
studied by Chang [2] both experimentally and theoreti-
cally. The geometry is shown in Fig. 1. The line widths are
1.524 mm and are separated by 0.254 mm over a 0.254 mm
substrate of epoxy glass (e, = 4.65). For conciseness the
presentation of effective dielectric constants, characteristic
impedances, and eigencurrents is not given, but each pa-
rameter is nearly frequency independent to frequencies
well over 10 GHz, owing to the low dielectric constant.
The port termination notation is shown in Fig. 3, and port
voltage calculations for the geometry in [2] are shown in
Fig. 4. The results presented by Chang are difficult to
accurately take from his figures, but good agreement is
obvious upon comparison. It should be noted that the
input voltage used here is an idealization of that used by
Chang and this may account for any small discrepancies.
The results were found using constant values of character-
istic impedances, eigencurrents, and effective dielectric
constants since they are relatively constant for this case to
frequencies in excess of 10 GHz, and for the 1-ns-rise-time
step (0 to 100 percent) only frequency components approx-
imately <1GHz are required. This therefore corresponded
to a TEM analysis.

All subsequent examples will be for the geometry of Fig.
5, selected as a case when modal dispersion occurs at
relatively low frequencies such that the validity of the
TEM approximation can be examined. The effective di-
electric constants and characteristic impedances are plot-
ted in Fig. 6 from 1 to 100 GHz. In comparison with [5],
where little dispersion was indicated, it is seen that the
lines become more dispersive when they are relatively wide
(127 pm) and are sitnated over a high-permittivity sub-
strate (Si, €,=12). In this case, dispersion becomes a
factor at frequencies less than 20 GHz and the characteris-
tic impedances (especially Z;,) show significant frequency
dependence. Since the case examined in [5] was nearly
dispersionless up to 100 GHz, it is expected that the TEM
approximation would be valid for frequencies less than 100
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Fig. 3. Generalization of multiconductor microstrip. Line 1 is driven
with emf e(z). The termination at the source end of line k is referred
to as S, and that at the load as L;.

GHz (as was shown). It is important to evaluate the
accuracy of the TEM approximation for cases when dis-
persion becomes a factor.

Before comparing the results of a TEM analysis against
a quasi-TEM analysis, one must first verify that a quasi-
TEM approach is valid by examining the magnitudes of
the longitudinal fields. Obviously if the longitudinal fields
cannot be ignored, both the TEM and quasi-TEM ap-
proaches are invalid. For dispersive geometries such as the
one considered, a full-wave analysis becomes more critical
to verify that a quasi-TEM analysis is valid. Fig. 7 shows
the magnitude squared of the longitudinal electric field
integrated over the shield cross section (made large to
approximate guided waves in an open structure) relative to
the same quantities for the transverse electric fields. As a
comparison, results are shown for the dispersionless case
of [5] as well as for the dispersive case of two 127-um-wide
strips on Si described above. For the dispersionless case,
the magnitude squared of the longitudinal electric field
integrated over the cross section is less than 10™% of the
same quantities for the transverse field. For the dispersive
structure, it is seen that the same ratios are much larger,
and at 100 GHz the integral of the longitudinal field is
nearly 20 percent of the integrals of the transverse fields
for some field components. This is an indication that the
quasi-TEM approximation is becoming poor and one might
be required to usc an alternative technique if signals with
frequency components over 100 GHz are considered. Ad-
ditionally, at frequencies over 100 GHz modes in the
shielded structure that were evanescent at lower frequen-
cies become propagating modes. The excitation of these
higher order modes at discontinuities (terminations) is
ignored in a quasi-TEM solution.

It is therefore seen that one must exercise caution when
using the quasi-TEM approximation for picosecond pulses
on microstrip over high-permittivity substrates. It is for
these cases that using the full-wave approach will be most
useful. In this example the quasi-TEM approximation (ne-
glecting longitudinal fields) appears to be accurate up to
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Fig. 4. Voltages at terminations of three-line geometry of Fig. 1. The input voltage e(¢) is idealized as a 1-ns-rise-time step as
compared to that used in [2]. The top figures are for voltages at the ports of the driven end and the bottom figures are for
voltages at the load end. From left to right the signals are on lines 1, 2, and 3, respectively. The line length is 30.48 cm (12
in). The terminations are resistors with L, = L, =310 Q, L, =367 Q, S, =50 Q, $; =S, =0 (open).

-
€r1
—~ Wl ks
| ——
-+
d €ra — W2 h
_*. "
t €3
4 A4
! a —
Fig. 5. Two-conductor microstrip geometry. The top line is referred to as
line 1 and the bottom is line 2. Geometrical parameters: wl=w2=¢=
d=127pm, s =381 pm, a=h=254 cm, ¢,, =¢,; =12, and ¢, =1.
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Fig, 6. The (a) effective dielectric constants and (b) characteristic impedances for Fig. 5. The characteristic impedance is
denoted Z,; for line i, mode j.
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Fig. 7. The integral of the magnitude squared of the longitudinal electric field (E,) divided by the integral of the magnitude
squared of the transverse electric fields (E, or E,) with integrals over the shield cross section. The top figure is for the two
line geometry in [5] (wl=w2=r=d =10 pm, €,, =¢,;=4, ¢,;=1) and the bottom figure is for the parameters given in
Fig. 5. The curves are as follows. a, mode 2 and E_; b, mode 2 and E,; ¢ mode 1 and E,; 4, mode 1 and E,.

around 100 GHz although dispersion is significant at fre-
quencies over 20 GHz, thus the need to distinguish be-
tween a TEM and a quasi-TEM mode representation. The

presence of dispersion is not necessarily an indicator of the -

need to consider the longitudinal fields. To the contrary,
these fields can often still be neglected and the frequency-
dependent propagation accurately modeled by using a
quasi-TEM as opposed to a TEM analysis.

Consider the geometry in Fig. 5 loaded with 50 Q
terminations at all ports, line 1 driven by a 1 V sinusoidal
source, and 5 mm line lengths. The magnitude and phase
of the voltage at the output ports of the two lines are
shown in Fig. 8 for frequencies up to 100 GHz using the
‘data in Fig. 6. The solid line corresponds to the TEM
solution (using parameters from Fig. 6 at 1 GHz) and the
dashed line uses frequency-dependent model parameters
(quasi-TEM). It is seen for the case considered here that
the TEM solution breaks down at frequencies close to 20
GHz and a frequency-dependent quasi-TEM analysis is
required.

Time-domain results are now considered for pulses
propagating on the lines in Fig. 5. Two different tech-
niques can be used to perform such an analysis, depending
on the geometry and signal speed. If the lines are long
enough and the signal speeds fast enough, dispersion may

become an issue. Using the equivalent circuit model, dis-
persive pulse propagation can be investigated for situa-
tions in which the lines are terminated in linear loads. The
problem is solved at discrete frequencies, as was done in
the calculation of Fig. 8, and then the frequency-domain
data are converted to the time domain via the FFT. This
technique is only applicable to cases for which linear loads
are used. If the line lengths and signal speeds are such that
dispersion is negligible, the model can be used to study
pulse propagation on nonlinearly terminated lines. For

- such cases the model is implemented entirely in the time

domain. Since the model is implemented in the time do-
main, the model parameters (eigencurrents, cigenvoltages,
and mode speeds) are assumed to be frequency indepen-
dent and the calculation reduces to a TEM signal propaga-
tion analysis. Obviously, this time-domain approach can
also be used for linearly terminated lines when dispersion
is negligible, as was done in the calculation of Fig. 4. To
emphasize these points, two examples of pulse propagation
on multiconductor transmission lines are studied. A dis-
persive case with linearly terminated lines is first investi-
gated, followed by a nondispersive situation in which
nonlinear terminations are used.

Consider the geometry in Fig. 5 with 10 mm line lengths.
Assume all ports have 50 { terminations and line 1 is
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Fig. 8. Magnitude and phase of the voltage at the output ports of the two lines in Fig. 5. There are 50 § terminations at all
ports and line 1 is driven by a 1 V sinusoidal signal at frequencies from 0 to 100 GHz. The lines are 5 mm long. The solid
line corresponds to the frequency-independent TEM solution, and the dashed to the frequency-dependent quasi-TEM

solution. (a), (b) Output of line 1. (c), (d) Output of line 2.

driven by a pulse with a 1 V peak amplitude, 15 ps rise and
fall times (0100 percent) and a 100 ps pulse width. Since
the loads are linear, the dispersive problem can be ana-
lyzed by first working in the frequency domain. The com-
putation is efficiently performed using the equivalent cir-
cuit model. The advantage of using this model coupled
with a CAD package such as SPICE is that realistic,
complicated linear terminations can easily be considered.
For this calculation a 2048 point FFT was used with a
sample spacing of 4.88 ps, producing a foldover frequency
of 102.4 GHz. All 2048 points are used to model the pulse
propagation along the line. The negative frequency compo-
nents of the port voltages are the complex conjugate of the
corresponding positive frequency components; thus only
positive frequency components need be calculated using
SPICE. SPICE was run at 33 discrete frequencies (from 0
to 102.4 GHz in 3.2 GHz increments) and the port volt-
ages are approximated as being piecewise linear for fre-
quencies between the computed points. The pulse voltage
at the end of each line is plotted in Fig. 9. The solid line is
the TEM result (constant mode speeds, eigenvoltages, and
eigencurrents over the entire frequency range, 0 to 102.4
GHz, using values calculated at 1 GHz from a full-wave
solution) and the dashed line considers dispersion. For the
case considered here, the TEM solution approximates the
dispersive quasi-TEM solution fairly well. For longer lines
or faster signals the discrepancy should increase.

The circuit model for the multiconductor lines is now
used to study pulse propagation on the microstrip model
of Fig. 5 terminated in nonlinear loads. Since the loads are
nonlinear, dispersion must be ignored when using the
SPICE transmission line model. All model parameters
used are those calculated at 1 GHz and a TEM analysis of
the signal propagation is realized. Unlike the calculation
above, the entire computation is performed in the time
domain. Diodes are used as the device terminations and
are assumed to obey the nonlinear I -V relationship

i=10"[exp(400) —1]. ‘(17)

An input pulse with 0.5 ns rise and fall times and 1 ns
width is used to study pulse propagation on the nonlin-
early loaded lines and thus its frequency spectrum extends -
to approximately 2 GHz. Upon examining the dispersion
curve and characteristic impedance for the geometry, one
can see that the required parameters for the model are
nearly frequency independent over the needed frequencies.
Although not shown, the eigencurrents are also approxi-
mately constant. The pulse response for the coupled lines
loaded with diodes, shown in Fig. 10, is similar to that in
[3] for an analogous problem (two transmission lines with
diodes as loads).

The CPU time and memory required by the model
depend on the CAD package with which it is implemented.
Each case shown above was calculated on a VAX 11 /785
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Fig. 9. Pulse response at the output ports of the two lines in Fig. 5. There
are 50 Q terminations at all ports and line 1 is driven by a 1 V pulse
with 15 ps rise and fall times and a 100 ps width. The lines are 10 mm
long. The solid line corresponds to the dispersionless TEM solution,
and the dashed to the frequency-dependent quasi-TEM solution. (a)
Output of line 1. (b) Output of line 2.

using SPICE, and none required more than 1 minute of
CPU time (including the time for the FFT). This does not
include the CPU time required to compute the frequency-
dependent microstrip parameters. The speed of the spec-
tral-domain technique is dependent on the complexity of
the geometry and the number of basis functions and
spectral terms used in the calculation. The SPICE program
required about 2 Mbyte of RAM. To run the program, one
has only to input the eigencurrents, effective dielectric
constants, and modal characteristic impedances.

V. CONCLUSIONS

An equivalent circuit model for hybrid-mode multicon-
ductor transmission lines has been presented. The equiva-
lent circuit model parameters can be calculated through a
TEM or a full-wave analysis. The full-wave approach
allows one to use a dispersive quasi~-TEM analysis once
such an approximation has been validated. The model was
used to simulate signal propagation on coupled microstrip
with applications in high-speed integrated circuits. The
form of the equivalent circuit model does not change with
varying line length or frequency of operation. Within the
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Fig. 10. Voltages at ports of geometry in Fig. 5 with 0.5 ns rise and fall
times and 2-ns-wide 1 V amplitude pulse source, e(z). The top figure is
for voltages on line 1 and the bottom for line 2. The solid line
represents voltages at the source end, and the dashed voltages at the
load end. The loads, L, and L,, are both diodes in series with 10 Q
resistors. The source terminations, S; and S,, are both 50 @ resistors.
The lines are 30.48 cm long.

constraints of SPICE, dispersive linearly loaded lines and
nondispersive nonlinearly loaded lines were analyzed. Loss
was assumed negligible but could be included by using a
more general CAD package. Since the model can easily
handle a TEM as well as a quasi-TEM analysis of mi-
crostrip, it provides a means of evaluating the accuracy of
the TEM approximation which neglects dispersion. The
accuracy of the TEM approximation was investigated for
time-harmonic as well as pulse signal propagation. For
some cases examined, the time-harmonic signal propaga-
tion data obtained using the TEM approximation became
quite inaccurate at frequencies in access of 20 GHz. The
TEM approximation was adequate, however, for pulse
propagation with 15 ps rise and fall time pulses on the
geometries investigated. As the line widths, substrate di-
electric constant, line lengths, and signal speeds increase,
one would expect the effects of ignoring dispersion to
become more pronounced.
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